Evidence for spatial modules mediated by temporal synchronization of carbachol-induced gamma rhythm in medial entorhinal cortex.
نویسندگان
چکیده
Fast (gamma) oscillations in the cortex underlie the rapid temporal coordination of large-scale neuronal assemblies in the processing of sensory stimuli. Cortical gamma rhythm is modulated in vivo by cholinergic innervation from the basal forebrain and can be generated in vitro after exogenous cholinergic stimulation. Using the isolated guinea pig brain, an in vitro preparation that allows for the study of an intact cerebrum, we studied the spatial features of gamma activity evoked by the cholinomimetic carbachol (CCh) in the medial entorhinal cortex (mEC). gamma activity induced by either arterial perfusion or intraparenchymal application of CCh showed a phase reversal across mEC layer II and was reduced or abolished in a spatially localized region by focal infusions of atropine, bicuculline, and CNQX. In addition, a spatially restricted zone of gamma activity could be induced by passive diffusion of CCh from a recording pipette. Finally, gamma oscillations recorded at multiple sites across the surface of the mEC using array electrodes during arterial perfusion of CCh demonstrated a decline in synchronization (coherence) as the interelectrode distance increased. This effect was independent of the signal amplitude and was specific for gamma as opposed to theta-like activity induced by CCh in the same experiments. These results suggest that CCh-induced gamma oscillations in the mEC are mediated through direct muscarinic excitation of a highly localized reciprocal inhibitory-excitatory network located in superficial layers. We propose that functional cortical modules of highly synchronous gamma oscillations may organize incoming (cortical) and outgoing (hippocampal) information in the mEC.
منابع مشابه
Carbachol induces fast oscillations in the medial but not in the lateral entorhinal cortex of the isolated guinea pig brain.
Fast oscillations at 25-80 Hz (gamma activity) have been proposed to play a role in attention-related mechanisms and synaptic plasticity in cortical structures. Recently, it has been demonstrated that the preservation of the entorhinal cortex is necessary to maintain gamma oscillations in the hippocampus. Because gamma activity can be reproduced in vitro by cholinergic activation, this study ex...
متن کاملNMDA receptor-dependent switching between different gamma rhythm-generating microcircuits in entorhinal cortex.
Local circuits in the medial entorhinal cortex (mEC) and hippocampus generate gamma frequency population rhythms independently. Temporal interaction between these areas at gamma frequencies is implicated in memory-a phenomenon linked to activity of NMDA-subtype glutamate receptors. While blockade of NMDA receptors does not affect frequency of gamma rhythms in hippocampus, it exposes a second, l...
متن کاملprelimbic of medial prefrontal cortex GABA modulation through testosterone on spatial learning and memory
Prefrontal cortex (PFC) is involved in multiple functions including attentional , spatial orientation, short and long-term memory. Our previous study indicated that microinjection of testosterone in CA1 impaired spatial learning and memory. Some evidence suggests that impairment effect of testosterone is mediated by GABAergic system. In the present study, we investigated the interaction of test...
متن کاملprelimbic of medial prefrontal cortex GABA modulation through testosterone on spatial learning and memory
Prefrontal cortex (PFC) is involved in multiple functions including attentional , spatial orientation, short and long-term memory. Our previous study indicated that microinjection of testosterone in CA1 impaired spatial learning and memory. Some evidence suggests that impairment effect of testosterone is mediated by GABAergic system. In the present study, we investigated the interaction of test...
متن کاملMuscarinic Suppression of Excitatory Synaptic Responses in Layer II of the Entorhinal Cortex
Entitled: Muscarinic suppression of excitatory synaptic responses in layer II of the entorhinal cortex and submitted in partial fulfillment of the requirements for the degree of Masters of Psychology complies with the regulations of the University and meets the accepted standards with respect to originality and quality. The entorhinal cortex is thought to play a role in mechanisms mediating sen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 20 20 شماره
صفحات -
تاریخ انتشار 2000